翻訳と辞書 |
Ring spectrum : ウィキペディア英語版 | Ring spectrum
In stable homotopy theory, a ring spectrum is a spectrum ''E'' together with a multiplication map :''μ'':''E'' ∧ ''E'' → ''E'' and a unit map : ''η'':''S'' → ''E'', where ''S'' is the sphere spectrum. These maps have to satisfy associativity and unitality conditions up to homotopy much in the same way as the multiplication of a ring is associative and unital. That is, : ''μ'' (id ∧ ''μ'') ∼ ''μ'' (''μ'' ∧ id) and : ''μ'' (id ∧ ''η'') ∼ id ∼ ''μ''(''η'' ∧ id). Examples of ring spectra include singular homology with coefficients in a ring, complex cobordism, K-theory, and Morava K-theory. == See also ==
*Highly structured ring spectrum
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Ring spectrum」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|